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ABSTRACT. We study the accuracy of the output of the Fast Fourier Transform 
by estimating the expected value and the variance of the accompanying linear 
forms in terms of the expected value and variance of the relative roundoff errors 
for the elementary operations of addition and multiplication. We compare the 
results with the corresponding ones for the direct algorithm for the Discrete 
Fourier Transform, and we give indications of the relative performances when 
different rounding schemes are used. We also present the results of numerical 
experiments run to test the theoretical bounds and discuss their significance. 

1. INTRODUCTION 

1.1. Purpose. The subject of this paper is the analysis of the sensitivity of 
the Fast Fourier Transform to numerical errors. The Fast Fourier Transform 
(FFT) is an algorithm that evaluates the Discrete Fourier Transform of an n- 
dimensional data vector of complex numbers in a number of operations much 
smaller than the direct algorithm would require. 

The model of error propagation that will be used is based on the usual as- 
sumptions of floating-point arithmetic. The model is linear in the sense that the 
absolute errors are approximated by the first-order terms of the Taylor expansion 
in local relative errors, and is stochastic in the sense that these local errors are 
regarded as random variables, independently and identically distributed (i.i.d.), 
for each elementary operation in which they arise. This method of analysis will 
allow us to measure the error in the final output by its statistical properties, i.e., 
its expected value and variance, rather than in worst-case terms. The statistical 
properties of the final output will depend on the properties of the local errors 
arising in elementary operations. Accordingly, a stochastic model of these local 
errors is introduced and its validity is tested by numerical experiments. 

1.2. Basic assumptions and methods of analysis. In the machine M, real 
numbers x E R are represented by the elements of a discrete set RM' which, 
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if x :# 0, are of the form 
xk = ?mb, 

where b is the base of the machine, I is an integer such that -L < I < U, 
and the mantissa m is a T-digit number in base b such that b 1 < m < 1 . If 
x and y are elements of RM, and f is an elementary operation, the machine 
will compute f(x, y)A, which is in RM and is such that 

A 

f(x, y) = f(x, y)(1-E), 

where IEI < cM, the bound cM depending only on M. The quantity E is 
the local relative error related to the operation f, and it can be expressed as 
follows: 

f(X, y) -f(x y)^ 

f(x,y) 

In general, an algorithm is initiated from a set of data (xo, ..., x,_,) and 
proceeds through a set of intermediate results t, ..., tm each of which is 
computed through an elementary operation depending on the previous results 
and the initial data, i.e., 

tk = fk(tl ,* ,tk ; XO,*, Xn-l). 

Hence, fk represents an elementary operation which depends explicitly on at 
most two of the values tl, ... , tk- I; XO, ...5 , x 1. In actual computation, 
each Xj is replaced by its machine representation, x, and each t3 is replaced 
by a computed value tJ . Hence, if ek is the local relative error for the kth 
operation, then 

tk =fk(tl , * k-l; XO, ** n 1ek)* 

If we assume that the initial data are machine numbers, then, using the differ- 
entiability of the fk A it can be shown by induction on k that 

( 1.1 ) tk = tk +).k (E) + O( IIE 1t ) 

where Lk is a homogeneous linear function of E = (E1, ..., Ek). 
The Ak in (1.1) are called the accompanying linear forms of the algorithm. 

These forms can be used to compute the build-up of the first-order absolute 
errors for the numbers computed in the algorithm by using the fact that all of 
the E6 are bounded in absolute value by EM: 

kt -k < tj Mk(D6MI) + O(EM) 

An alternative approach, and one we shall use here, is to assume that the local 
relative errors e6 are random variables with given distributions. In this case the 
distributional properties of these first-order absolute errors can be estimated by 
considering the properties of the accompanying linear forms, which are linear 
combinations of random variables and hence random variables themselves. 
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Because the )k are linear, we can write 
k 

Ak(e) gk jEi 
y= 

where the gkj are combinations of the tj, and therefore depend on the initial 
data. If we assume that the Ej are independent identically distributed (i.i.d.) 
random variables with means ,u and variances a 2, then the first two moments 
of the Ak are of the form 

k 

E(Ak) =MEgkj 
j=1 

and 

var(Lk) = a2* Igk] ) = IIgk 12 a2 

where 11 112 indicates the 12 norm, and gk = (gkl X * gkk) 

Some discussion of the interpretation of the local relative errors as random 
variables is called for. The local relative error at the jth step of the algorithm, 
Ej, is for any machine a function of the jth operation, f;, and the two values 

that this operation processes, say tA and t A (1, k < j). Thus, it is a random 
variable if the values of t4 and t A are considered to be random variables, and 
the distribution of E will depend on the distributions of t4 and t A and on 
the type of operation f;. In this work we will consider only the two operations 
of addition and multiplication, and we will assume that these two operations 
produce different distributions for the local errors. Thus the local errors occur- 
ring in the algorithm under analysis will be separated into two groups, and the 
contribution of each to the final error will be computed. 

Given the group of local relative errors corresponding to the operation of 
addition, we will assume that local errors, denoted by aj, are independently 
and identically distributed (i.i.d.) with means Ma and variances a . Similarly, 
we denote the local errors arising from multiplication by 7ri and denote their 
means by Mm and variances by am. The assumption of independence of the 
local errors introduced at different steps can be questioned. For example, it 
can be easily seen by following the algorithm for the FFT that in computing 
the t+ a few multiplications are repeated, therefore the same roundoff errors 
are repeated and the relative roundoff errors for these particular operations are 
correlated. However, these correlated errors affect different components of the 
output vector. Less obvious correlation might be observed through numerical 
experiments. In any case, it is reasonable to expect that, for large sets of data, 
the effect of correlation will be relatively small. 

Since Ak is linear, Akk(e) can now be written 

Ak (E)= (Aa)k (a) + (Am)kW(7), 
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where a =(al, ai) and 7r = (7r, . 7.., r,) with i + I = k. Thus, 
i 1 

E(A k) = E((Aa)k) + E(()m)k) = a + m gkj 
j=1 j=1 

and 
. i I 

var(Ak) = E Z 1g1I2 + a2 Z EgmI2 
j=1 j=1 

The expression for the mean will remain valid even without assuming indepen- 
dence of the relative errors. The expression for the variance, on the other hand, 
would need to contain all the terms of the correlation coefficients, which in the 
case of independent variables are zero. 

The main result of this paper are the bounds on E((Aa)) and E((Am)) for 
the final step of the Radix-2 Fast Fourier Transform expressed in terms of the 
expected values of the relative roundoff errors for the elementary operations of 
addition and multiplication. 

1.3. Literature. Since the appearance of the article [7] in which Cooley and 
Tukey proved the existence and provided an implementation of the Fast Fourier 
Transform, several papers have appeared on the subject, and numerous versions 
of the algorithm have been implemented for use in digital computers. Our 
treatment of the FFT, based on reduction formulas for the case n = 21, follows 
Cooley, Lewis, and Welsh [5]. Several authors have dealt with implementations 
of FFT algorithms; in addition to the ones already mentioned, see Singleton 
[18], Uhrich [22], Cooley, Lewis, and Welsh [6], Gander and Mazzario [9], de 
Boor [8], and Temperton [21]. A survey of implementations can be found in 
Merz [16]. Recently, a highly optimized FFT subroutine has been included in 
the Engineering and Scientific Subroutine Library (ESSL) for the IBM 3090 
Vector Facility (see Agarwal and Cooley [1]). 

The question of accuracy when the FFT is implemented on a finite-length- 
word computer has been previously addressed by Gentleman and Sande [10]. 
They showed, by comparing upper bounds on roundoff noise, that the accu- 
mulated roundoff error, in floating-point arithmetic, is considerably lower than 
that obtained when the Discrete Fourier Transform is computed directly from 
the definition. Welsh [23] provides upper and lower bounds on the root mean 
square (RMS) error in a power-of-two algorithm in fixed-point arithmetic, and 
Ramos [17] derives upper bounds for the RMS and maximum roundoff errors 
in floating-point arithmetic for Radix-2 and Radix-4 FFT algorithms. 

A statistical model for floating-point roundoff errors is used by Weinstein 
[24] to predict the output noise variance, and by Kanero and Liu [15], who 
derived expressions for the mean square error in a power-of-two FFT. A linear 
model of error propagation is used by Henrici [14] in a worst-case rounding 
error analysis for a power-of-two FFT in floating-point arithmetic. 

Our roundoff error analysis for the Radix-2 FFT is more general than the 
work of Weinstein [24] and Kanero and Liu [15] because it does not assume 
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that the expected value of the relative roundoff errors is zero and, by differ- 
entiating between the relative errors coming from addition and those coming 
from multiplication, it can be used to predict the expected global error in the 
output when different rounding schemes are used. In the special case where the 
relative errors have zero mean, our upper bound on the variance agrees with 
theirs. In the present work we apply the same type of roundoff error analysis 
also to the traditional algorithm to compute the Discrete Fourier Transform 
(pre-FFT), and we are able to point out how first- and second-order moments 
of the relative errors play a fundamental role in establishing which algorithm 
gives a more accurate output. The advantage of our analysis over the worst-case 
approach of Ramos and Henrici is that the constant cM) largest possible rela- 
tive roundoff error, is replaced by the mean value of the actual relative roundoff 
errors, which, in general, will be smaller. The results of numerical experiments 
are in good agreement with the theoretical findings. 

The accompanying linear forms that we use to describe the first-order effects 
of the local relative errors on the intermediate results, and therefore on the 
output, were introduced by Stummel and Heiner [20] (see also Stummel [19]). 
For fixed-point arithmetic this technique was used earlier by Henrici [ 1]. 

2. ERROR ANALYSIS OF FAST FOURIER TRANSFORM 

2.1. Accompanying linear forms for the Discrete Fourier Transform. The Dis- 
crete Fourier Transform is a method which can be used to analyze an arbitrary 
set of data by transforming it into periodic components of certain frequencies, 
whether or not the data appears to be periodic. Let co; = 2jr/n be the jth 
Fourier frequency, 0 < j < n/2, and let x0, xl,..., xn_1 be any set of n 
complex numbers. Then it is well known that, for t = 0, ..., n - 1, 

n-I 

x = Yj * exp(icojt), 
j=O 

where 
n-I 

(2.1) Y= Ext * exp(-iojt). 
t=O 

The vector (y0, . Y. -, Ivs 1) is called the Discrete Fourier Transform of (x0, xl, 

** Xn-1) 
The computation of the Discrete Fourier Transform directly from the defini- 

tion is quite inefficient. The computation requires n2 complex multiplications 
and a similar number of complex additions, hence is very costly to perform on 
large data sets. It is well known that the algorithm known as the Radix-2 Fast 
Fourier Transform computes the transformation much more efficiently, on the 
order of n log2 n operations. In this paper we compare the accuracy of the two 
methods of computation. Since the particular Fast Fourier Transform algorithm 
that we are interested in requires n to be a power of 2, we assume that n = 21. 
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Furthermore, the components of the data vector x .. ., x-I are assumed to 
be machine numbers, thus eliminating the error inherent in rounding the origi- 
nal data to machine numbers. In most applications the lack of accuracy in the 
initial data makes this initial rounding insignificant. 

It should be noticed that, so far as the accuracy of the output is concerned, 
dividing by n in a base-2 machine does not introduce any roundoff error be- 
cause, since n is a power of 2, it merely amounts to a shift in the exponent of 
the number. 

We obtain expressions for the accompanying linear forms for the Direct 
Fourier Transform and, under reasonable assumptions, bounds on the mean 
and variance of these forms. In order to compute recursively the components 

n-I 
Yk = .E xtw', k=O...,n-I 

where w = exp(-27 i/n), we define the jth intermediate components 

Zkj=ZXtWx, k=O,...,n-1, 
t=0 

for j=O, ...,n- 1. Hence, for j=O, ..., n-2 and k=O, ...,n- 1, 

(2.2) Zk,j+l =Zk j + Xj+lW k(j). 

Computationally, 
ZkOXO, .Jc~~~~~~~k(j+l) A 

zk,O = Xo9 Zk,j+l = (ZkIj +Xj+l 1W 

where z is the computed value of z. Since for machine numbers a, b, and c 
we have 

(a+b.c) = (a+b.c(l +7c))-(1 +a), 
where Xr is the relative error in multiplication and a is the relative error in 
addition, we get for each k and j, 

Zk, j+l = {k j + Xj+1 * kW Ui 1)(1 + 7rk,j+l)} * 1+ ?ak,jtl) 

(2.3) *(zkj +x kZ++l)) ( + ak ) 

k.(j+l) 
+ Xj1 

, b 7k,j+i~ 

where indicates that only linear error terms have been retained. Defining 
the accompanying linear forms by 

'k, j+ i-Zk,j+1 - Zk,j+l 

we obtain from (2.2) and (2.3) 

Zkjl + Ak j+- Zk + k + Xj++ l X k(j+l) 

k k1(j+l) + Zk +1k,j+l + XJ+4 W ,+ 
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We now make the assumption that w1 = w. This is justified by the fact that 
most programs which compute the Discrete Fourier Transform perform the 
operations necessary to compute the w's in double precision. Now using (2.2) 
and assuming that -k (+l) = k (j+l)) we obtain, from (2.3), the recursion 
equation for the linear forms 

J+1~~~~(+) (2.4) kj+ kj+Zkj+ k,jl+j+W * kjl 

Decomposing the linear forms into the components generated by addition and 
multiplication, we have 

Ak,j = (Aa)k,j + (AM)kJ 

where the (/a)k j are only functions of the addition errors and the (Qm)k.J 
are only functions of the multiplication errors. Thus, from (2.4) we obtain the 
difference equations 

(Aa)k,j+l = (Aa)k,j + Zk,j+l ak,j+1 

and 

(AM)kJ+l = (AM)kJ + Xj+lW (j+l)k* l 

The initial conditions for the above difference equations are 

(Aa)k o = O, (Am)k O = 0. 

Using our assumption that division by n introduces no additional error, we see 
that 

(AQa)k n- I= Zk iak, i = n :E ( xtw )ak, i 

and similarly 

n-l 

(Am)k,nf.l = X tW * 7k ,t 
t=l 

foreach k=0,...,n-l. 
If we assume that the ak i's are i.i.d. with mean Ma and variance c2 and 

that the 7rk 's are i.i.d. with mean Mm and variance 2m, then we can obtain 
the following bounds on the expected value of the linear form for addition and 
multiplication errors: 

1 n-I i 1 n-I 

(.((5a)k,)n- I - Ha ItI = n Ma E(i + l)IIXIKoo 
(2.5) 

n 
i=l t=0 i=1 

= Mta n + 1 - n ) ljxllf 
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and 

(2.6) IE((Am)k,n-l)l <? m (I -n)"I 

for k=O, l,...,n-l. 
Under the i.i.d. assumption on the errors we can also obtain the following 

bounds for the variances of (Aa)k n-l and (m)k n-l: 

n-I i n-1 

Ivar((Aa)k n )I < - * aa ElEZxtX2 1 i12 
(2.7) i=I t=O i=1 

=aa2 2 ) 1X112 

and 

(2.8) l Jvar((AM)k, n-1)1 < n2 am 17 nXl 2 @ 2 ll 

s=1 
2.2. Accompanying linear forms for the Radix-2 Fast Fourier Transform. The 
FFT, which was discovered by Cooley and Tukey in 1965 [7], reduces the num- 
ber of arithmetic operations required to compute the Fourier transform. If n 
is a power of 2, n = 21, the "Duplication Theorem" can be applied recursively 
until one arrives at the Fourier Transform of a vector of size 1, which is just 
the identity. This algorithm is often referred to as the Radix-2 FFT; the imple- 
mentation use.d here organizes the intermediate results in a pyramidal structure 
and can be found in Henrici [13, pp. 367-371]. 

If we denote by q(j, m) the mth vector of the jth step of the iteration, then 
for k=0, 1, ..., 2i - I 

qk(j, m) = x,,, with v = pj(k) + 2m, 

where p1 is the bit-reversing function that maps the set of integers {O, 1, . . ., 

2i - 1 } onto itself by sending 

m:=m +2m +*.+2i m11j_, m1 E {O, 1}, 

to 

pj(m) := m + 2m 2 + + 2j-1m 

if j I4 O, while p(O) := O. Now let Zk(i, m) ,for k= 0, ... , 2i 1, denote 
the components of the Discrete Fourier Transform of the vector q(j, m); from 
the duplication formulas it follows that 

(2.9) zO(O, m) = x>, where v = p1(m), 

and 

(2.10) Zk(i, im) = 2(Zk(j-1 , 2m) + w Zk(-1, 2m + 1)), 
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where k=0, 1, ...,21 -1; m=0, 1, ..., 21 - 1;and j= 1, 2,..., l. 
Thus starting at j = 0, we can compute the Fourier coefficients recursively to 
obtain the coefficients for j = I which are the Fourier coefficients of x. 

Since each row of the pyramid contains the same number of entries, 2 1, each 
row can be thought of as a vector z with components zj (s), s =,... , 21 -1, 
where 

zj(2jm + k) := Zk(I, m) 

for j= O, 1, ..1 m =0, 1, ... ,2 -j - 1 and k=O, 1, ... ,2i - 1. With 
this notation, the formulas (2.9)-(2.1 1) become 

z1(21m + k + b2 I) = {zj_(2j' 2m + k) 
(2.12) b22'(I1(m l+) 

( ) ~~~~~~~~~b k21- 1 1 +(-1) w zj_,(2j' (2m+l)+k)}, 

where k =0, 1,..., 2j-1 - 1, m = 0, 1, ..., 2- 1, j= 1, 2, ..., l, and 
b = 0, 1, and 

(2.13) zo(m) = x(p1(m)) 

for m = O, 1, ..., 21 -1. 
We can rewrite (2.12) in matrix notation in the following way: 

(2.14) zi = Wjzi_ 1I 

where W. is a block diagonal matrix of the form J 

Ij DJ 

Ij -D D 

where Ij is the 2i 1 x 2i-1 identity matrix and Di is the 2i- 1 x 2i 1 diagonal 
matrix with entries 

(p 1)21 J 

Dj(p, p) = w P- 

In particular, by induction on j, we have that zn-i = F ZO, where Fn - = 

Hrr=n1I Wr 
In the computation of the Discrete Fourier Transform via the Radix-2 Fast 

Fourier Transform of a data vector x with n = 21 entries we will need to 
compute the following quantities for b = 0 and b = 1: 

zj(21m + k + b2i 1) - 1* [zj (21 * 2m + k) + (-1)bk2 

(2.15) .zj 1(2 j-1(2m + 1) + k)1, 

zo(m) = x[p (m) 

for m = 0, 1, ..., 21 - 1, where w := exp(-27ti/21). 
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Let ai be the local error due to addition and let 7ri be the local error due 
to multiplication in the computation of the components of z;. Then in com- 
putation: 

zj(2m + k + b21) 2 j_(21 *2m + k) 

+ (-1)) w2 zj_,(2j (2m + 1) +k)] 

Since z = z + A, multiplication by produces no error, and we assume that 
k2' I- 

w does not contain any error, it follows that 

2j2m+ k + b2j1) 

= 1 z1(2Jm+k+b2J 1) =zj(2(m+k+b2i+ )+Aj(2)m+k+b2(2 2 + 

-Zj(2'm +k +b2"f 1 

+ 2*[Aj_l (2 m + k) + (-l)wk * j_l (2 m + 2j- + k) 

+ (_ 1)bWk2 iZj I(2Jm + 2j-1 + k)X(j, m, kb)] 

+ zj(2jm + k + b2j-),(j, m, k, b), 

where a(j, m, k, b) and 7r(j, m, k, b) are the relative errors for addition 
and multiplication introduced in the computation of the (21m + k + b2j-')th 
entry of the vector zj. Therefore, 

Aj(2jm + k + b21) 

E.[Lj i(2jm+k)+(_1)bwk2 *j - j (2 m+2j1+k) 
b k2'Ij + (- 1) Uk-zj_1(2'm+2'-l + k)7r(j m,k,b)] 

+ zj(2jm + k + b2j l)a(j, m, k, b). 

Again decomposing A as A = Aa + A) to account separately for errors due to 
additions and errors due to multiplications, we have that 

Aaj(2m + k + b2) a= [1aj_1(2 m + k) 

(2.16) (_ 1bWk2 Aa 1 (2im + 2j 
1 

+ k)] 

+ zj(2jm + k + b2j l)a(j, m k, b) 

and 

Amj(2Jm + k + b2j') 

(2.1 7) = a* [Ain_1(21m + k) + (-M1j)b * wk2 mj (2im + 211 + k) 

+ (_1)bWk2 zj_i (2Jm + 2i1 + k)1(j, m, k, b)], 
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where b is either 0 or 1. The initial conditions are 

(2.18) a(m) o 0 

and 

(2.19) A70(m) 0, 

since we assume that the data are machine numbers and that the bit reversing 
function does not introduce any rounding error. 

Let Aaj be the vector of Aaj(p), for 0 < p < n, Zj the vector of the zj(p) 
and cj the vector of relative roundoff errors coming from additions introduced 
in the components of z; at the jth iteration. Then, in vector notation, 

Aaj, I = Wj+ Iaj + zj I? aj+I, j > 0, 

Aao = 0, 

where by x E y we indicate the componentwise multiplication of the two vectors 
x and y. Therefore, 

j-2 

Aaj+ = Wj+1 Wk+2(zk+l Eak+l ) + WJ +1(z1Oaj) + (zj+l ?a13)j+. 
k=O 

In particular, 
1-3 

(2.20) Aal = SWl * Wk+2(zk+l Z ak+i) + Wl(Zl. I al-1) + (z1Ea,). 
k=O 

Since each matrix W has exactly two nonzero entries in each row, each one of 
absolute value one-half, and for each k the ak(p) are i.i.d. random variables 
with mean Ma, we have that, for each component of Aal, 

1-2 

IE(Aad)I < E SIZk+1 11ooMa + IlIllI1oo/a 
k=O 

Since Zk = lr=k WzO we have IlZkll< I lixi I. Hence, for each entry of Aal , 

(2.21) IE(Aa)j j log2 n* IIXIK1Ma . 

We now find a bound for the variance of the components of the vector Aaj, 
that is, for the diagonal entries of the covariance matrix of Aaj, cov(,aj)). 

Proposition 2.2.1. If x is an n-vector of independent random variables and A 
is an n x n matrix, then 

cov(Ax) = A cov(x)A', 

where cov(x) is the diagonal matrix such that cov(x)ii = var(xi) and A' is the 
transpose of A. 
Proof. See Arnold [2, p. 41]. 0 
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Since the components of the vectors ak are assumed to be i.i.d. random 
variables with mean MUa and variance a the covariance matrix of (zk E ak) 

is a diagonal matrix, Ak, such that Ak(d, d) = Cao(zk(d))2 . From (2.20) and 
Proposition 2.2.1 it follows that 

j-3 
cov(Aaj. =2 V ,jTWk72 1w' wI (7 j.. k2~lk+2 j 

k=O 
2 72 T? 2 72 

+OaaWlWZJ a ZJ 

where Zk2+ is the n x n diagonal matrix such that 

Zk2+l(d, d)= (zk+l(d))2 

In particular, 
-I-3 

cov(Aal) = aa E wl Wk+2Z +i K+2. w' + wAz7 1w' + Z2] 
Lk=O 

Since each Wk has exactly two entries in each row and column, each one of 
absolute value one-half, and IzkI ? lIxII00, then for each entry of the matrix 
cov(Aal) 

(2.22) cov(Aa) < log2 n 2aIIxII . 

We now turn our attention to Am. Let Ami be the vector with compo- 
nents A mj(p), and rj the vector of the relative roundoff errors coming from 
multiplication introduced at the jth iteration. Then 

Amj(2jm + k + b2j 1) = WjAmj_1(2jm + k) 

+ (-)w (zj_ 1 3 j) (2j m + k), j > O, 

AmO = . 

If we define the vector bj as 

bj(p) = 2wP2'i(_l)Pi- 1 

where p = E,o Ps2s, then (2.17) can be written, in vector notation, as 

1 j 1 k 

AMj+1 =f WrAmo + E fJ Wt 1H Ws * (bk ? Zk ? Erk+ 1). 
r=j+1 k=O t=j+ 1 s=1 

In particular, 
1-3 

(m1= E Wl ..Wk+2(bk+ E Zk ? Ek+ ) 
(2.23) k=O 

+ W1(b1_Ezl_ En1j_)+(bjE3z1_jEn1). 
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Since, for each k, the 7rk(p) are i.i.d. random variables with mean ,Um, we 
have, for each component of Aml , 

l 1-2 

IE(Zm) I < ?2 IlZk IlIMm + 2lzi-I ll8m 
k=O 

hence 

(2.24) jE(Qmd)j < I log2 I nllxIloo/m* 

Now we obtain an estimate for a bound for the variance of the components 
of the vector Ami I Since the components of the vectors uk are assumed to be 

i.i.d. random variables with mean gm and variance 2m the covariance matrix 

of (bk ?l Zk El ak) is a diagonal matrix, Ak, such that Ak(d, d) = 2 (zk(d))2. 
From (2.23) and Proposition 2.2.1 it follows that 

-j-3 

cov()imy) = m [ W>EW.. +ZWk+2Z. wK+2 w 
Lk=O 

+W'(m WjZJ-2 Wj + ?mzj-1 

where Zk+, iS the n x n diagonal matrix such that 

Zk+ I (d,~ d ) = (Zk+ I (d))2 

In particular, 

1o(m)= 4aOm 1: Wl 
.. 

Wk+2Z Kk+2 WE +WA-2WI +Z;-I] 

Hence, for each entry of the matrix cov(Am1), 

(2.25) cov(Am1) < c,2 1XII2 log2 n . 

3. A ROUNDING MODEL AND EXPERIMENTAL RESULTS 

The purpose of this section is to provide estimates of the first and second 
moment of the relative errors due to the elementary operations used by the 
algorithms that we have analyzed, that is, addition and multiplication. These 
relative errors are for a particular type of rounding and are not necessarily ap- 
plicable for any real machine. However, they will illustrate the type of rounding 
error magnitude that can be encountered and will serve as a model for estab- 
lishing the validity of the error estimates in the Fast Fourier Transform. 

In our rounding model we assume that b, an even positive integer, is the 
base of the number system in the machine and each floating-point number x 
is represented by the pair (m, 1) such that 

x =mb', -L < < U, 
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and m is a T-digit number, with first digit different from zero if x # 0. Given 
any number x between b-(L+l) and bU-l, we round it to T-digit precision 
by adding b-T-1 to it, then writing the sum in the form mb', where mi is 
a number in base b whose first digit is different from zero, and finally by 
truncating mt to T digits. Note that if x E [0, b-(L+l)), the roundoff process 
we use is undefined (on a machine, an underflow message would be returned). 
In this case we will set x = 0. In the present paper we will not worry about 
the machine representation of numbers greater than or equal to b u, which on 
a machine would cause an overflow error. 

If we assume the real data to have a uniform distribution, the relative round- 
off error for the operations of addition and multiplication inherit a stochastic 
structure. However, owing to the complexity of the model, we decided to per- 
form numerical experiments to estimate the expected value and the variance of 
the relative roundoff error for the operations of addition and multiplication in 
our model. 

In order to estimate numerically the first and second moment of the relative 
roundoff error for addition, we generated 60,000 pairs of independent, pseudo- 
random numbers from the uniform (- 1, 1) distribution. The interval (- 1, 1) 
was chosen to be consistent with the numerical test of the roundoff error prop- 
agation for the FFT on independent random data from the uniform (0,1) dis- 
tribution, where pairs of numbers may be either added or subtracted. Each 
number was rounded to a T-digit base 10 floating-point number (where T 
ranged from 3 to 8), and the sum of the two rounded numbers, x + y, was 
evaluated in 18-digit precision and rounded to T digits, (x + y)A .The quan- 
tity ((x + y) - (x + y)A)/(x + y) was computed in 18-digit precision and its 
mean and variance were evaluated over the 60,000 samples. It is interesting 
to notice that the values obtained for the mean are extremely consistent with 
a value of approximately -. 12 x 10-T for all values of T chosen, while the 
value of the variance is clearly of order 10-2T. It is important to note that a 
common assumption that the mean is zero (e.g., Weinstein [24]) is not valid, at 
least for our model. 

The expected value and variance of the relative roundoff error for multipli- 
cation was estimated numerically in a very similar way. For each value of T 
chosen, 100,000 pairs of independent random numbers from the uniform (0,1) 
distribution were generated and then rounded to T-digit floating-point num- 
bers in base 10. The product of each pair of rounded numbers was computed 
in 18-digit precision, x * y, then rounded to T-digit precision, (x *y) . The 
quantity ((x * y) - (x * y)&)/(x * y) was computed and its mean and variance 
evaluated for the 100,000 pairs of numbers. The value of the sample variance 
was 1.5 x 10-2T for all values of T, while the value of the sample mean ranged 

T-1 T-2 from -.1 x 10- to .3 x 10- . To test our theoretical predictions on the 
mean and variance of the global error for the Radix-2 FFT, we generated several 
vectors of complex numbers whose real and imaginary parts are independent 
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TABLE 3.1 
Infinity norm of the mean and variance of the global error in the 
FFT. Sample size is 10,000 for M = 8, 16, 32, and 5,000 
for M 64. 

T M mean variance 
4 8 .28 E-3 .21 E-07 
5 8 .28 E-4 .21 E-09 
6 8 .28 E-5 *.21 E-11 
4 16 .44 E-3 .24 E-07 
5 16 .44 E-4 .25 E-09 
6 16 .45 E-5 .25 E-11 
4 32 .73 E-3 .35 E-07 
5 32 .74 E-4 .36 E-09 
6 32 .73 E-5 .35 E-11 
4 64 .11E-2 .37E-07 
5 64 .11E-3 .38 E-09 
6 64 .11E-4 .37E-11 

pseudorandom numbers from the uniform (0,1) distribution. For each value 
of T = 4, 5, 6 we generated 10,000 vectors of length M = 8, 16, and 32, 
and 5,000 vectors of length M = 64. For each vector we rounded the real and 
imaginary part of each entry to T digits and we computed the Discrete Fourier 
Transform via the Radix-2 Fast Fourier Transform algorithm, where the result 
of each addition and multiplication, other than those used for the computation 
of the w's, was rounded to T digits. We then computed the Discrete Fourier 
Transform of the same rounded data via the FFT algorithm with all operations 
performed in double precision (18 digits in the machine we used). The mean 
and the variance of the absolute value of the difference in each component of 
the Discrete Fourier Transform was then computed. 

In order to compare the sizes of the vectors of means and variances, we 
computed their infinity norms. The infinity norms of these vectors for different 
length of the data vector and different values of T are listed in Table 3.1 and 
Table 3.2. Notice that the values are extremely consistent, and their dependence 
on T as well as on the length of the data vector is quite clear. 

The theoretical results suggested that the infinity norm of the mean absolute 
error should grow like log2 n lxii II,u; therefore we expect the ratio between the 
infinity norms of the mean absolute error for consecutive values of ' = 1og2 n 
to be approximately 

lo2(2n). [1+ 1].h, 
log2 n log2 n 

where h is the ratio of the infinity norms of the 2n-dimensional data vectors 
to the infinity norm of n-dimensional data vectors. This value approaches 1 
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TABLE 3.2 
Infinity norm of the mean and variance of the global error in the 
FFT. Sample size is 1, 000 for each T. 

T M mean variance 
5 128 .16E-3 .40E-09 
6 128 .16E-4 .41 E-11 
7 128 .16E-5 .40E-13 
5 256 .25 E-3 .59 E-09 
6 256 .25 E-4 .58 E-11 
7 256 .25 E-5 .58 E-13 
5 512 .37 E-3 .63 E-09 
6 512 .37 E-4 .63 E-11 
7 512 .37 E-5 .63 E-13 
5 1024 .55 E-3 .67 E-09 
6 1024 .55E-4 .68E-11 
7 1024 .55E-5 .66E-13 

as n becomes large. The numerical experiments indicate that the ratio of the 
infinity norm of the mean absolute error for consecutive values of 1 decreases 
as n becomes larger, going from about 1.9 to approximately 1.4. It should 
be pointed out that even though the results of the numerical experiments are 
in quite good agreement with the theoretical results, this is not sufficient to 
assume that the predicted expected value and variance of the global error in the 
output of the Fast Fourier Transform will be as close to the sample values when 
the distribution of the real and imaginary part of the data is not uniform on 
(0,1). Numerical experiments testing the deviation of the theoretical expected 
value and variance of the global error from the sample values corresponding to 
different distributions of the data are currently being performed. 

4. SUMMARY OF RESULTS 

A statistical model of error propagation has been used to compare bounds on 
the absolute roundoff error of the Radix-2 Fast Fourier Transform (FFT) and 
the traditional Fourier Transform (TFT). In this paper the bounds are given 
in terms of the norm of the input data, the size of the input vector, and the 
expected values of the relative roundoff errors arising from the operations of 
addition and multiplication. The bounds themselves are expected values and 
variances of the linear part of the absolute roundoff error for the output vector 
of the Fourier Transform. These estimates agree with earlier results in the sense 
that the upper bound on the variance of the absolute error is essentially the same 
as in Kanero and Liu [1 5], and the bounds on the mean absolute error are of 
the same order as those found by Henrici [14] when the same scalar is used in 
the definition of FFT. A new contribution given by our work is that we apply 
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TABLE 4.1 

TFT FFT 

IE(;a)l < 2(n + 1- )MaIIXIIoo log2 -la IIXII 

IE(Am)j ? (1 - j)#m IIXI00 1log2n#mjxjjl00 

Ivar(Aa)I < (njI) a2IIXI12 log2 nc 2lIxll2 

Ivar(Am)I < |7IXI, 4 nlog2 na lIxI 

our roundoff error analysis also to the traditional algorithm (pre 1965), which 
computes the discrete Fourier transform directly from the definition, and we are 
therefore able to give an indication of which algorithm produces more accurate 
output in the context of the rounding scheme used. In particular, it will turn 
out that for very small expected value of the relative error for addition and 
multiplication, the traditional algorithm will produce more accurate results. 

The type of error analysis carried out in this paper is believed to be more 
useful than those performed previously. Because the bounds are given in terms 
of the expected values of the relative roundoff errors of addition and multiplica- 
tion, Ma and Mm, they are more sensitive to the particular rounding scheme of a 
given computer. Moreover, they are in some ways more realistic than worst-case 
bounds involving the absolute roundoff error cM, as these worst-case bounds 
are often severe overestimates (see Ramos [17]). 

Table 4.1 shows the derived bounds on the expected values and variances of 
the absolute roundoff error for the transform algorithms FFT and TFT due to 
both addition and multiplication. Several of these results are worthy of special 
comment. 

First of all, it should be noticed that the bounds on the expected value on the 
accompanying linear forms for both addition and multiplication for the FFT 
grow like 1og2 n M ,u where M is the expected value of the relative error for 
the elementary operation, while for the TFT the bound on the expected value 
of the accompanying linear form for addition is of the order of n MUa, and 
the bound on the accompanying linear form for multiplication is of the order 
of Mm. Therefore we come to the conclusion that the FFT can be considered 
more accurate than the TFT only if the expected value of the relative error for 
addition is of the same size or larger than the expected value of the relative 
error for multiplication. In the case that both expected relative errors are zero, 
which was actually assumed by Weinstein [24] and by Kanero and Liu [15], a 
measure of the numerical accuracy of the algorithms is given by the variance of 
the absolute error. 

It is also interesting to notice that while for the FFT the bounds on the 
variance for the accompanying linear forms for both addition and multiplication 
are of the order of log2 n * o2, where or2 is the variance of the relative error 
for the operation considered, for the TFT the bound on the variance for the 
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accompanying linear form for addition is of the order of n a,,, and the bound 
on the variance for the accompanying linear form for multiplication is of the 
order of * C . Therefore, in case the rounding scheme used has zero mean 
relative error for both addition and multiplication, as assumed by Kanero and 
Liu [15] and in Weinstein [24], the TFT should be considered more accurate 
than the FFT in the sense that the absolute error in the output is expected to 
deviate less from the zero mean. 

The bounds in Table 4.1 were obtained by assuming that the relative round- 
off errors introduced at each step are mutually independent and independent 
of the relative roundoff errors introduced at previous steps, and by neglecting 
second-order effects. Both these hypotheses should be tested numerically, given 
a particular rounding scheme. For example, the E(va) term ignores terms of 
the order ,ua2, and as long as M a is smaller than 2 the contribution of the 
neglected terms will not be significant. However, should the rounding scheme 
used have larger AlaA the contribution of the quadratic terms in the local errors 
need be considered in order to have an accurate roundoff error analysis. 

In an attempt to verify our results, we constructed a model that simulates a 
rounding scheme. This model was defined in ?3, and numerical attempts were 
made to predict the values of Ma and Mm. Numerical estimates of Ma and 
Mm were determined experimentally on large samples, for b = 10 and different 
values of T. The numerical experiments consistently indicated the value of the 
variance for the relative error for both operations to be of the order of 10-2T 

T - which implies that in both cases the standard deviation is about 10- . The 
values of the sample mean for addition were so consistent as to suggest that the 
true value of Ma is, when b = 10, very close to 10-T . It should be emphasized 
that these numerical results are only valid for the rounding model described in 
?3. 

The numerical results from this rounding model suggest that the hypothesis 
that the expected values of the local relative errors for addition and multipli- 
cation are zero, which was assumed in the two previous statistical analyses of 
roundoff errors for the Radix-2 FFT (see [15, 24]) may not be valid. 

The numerical experiments were performed to verify our results on the FFT 
when the real and imaginary parts of the data were uniformly distributed in the 
interval (0,1). The base of the number system was chosen to be 10, the number 
of digits of the mantissa, T, ranged from 3 to 6, and the size n of the data 
vector varied from 8 to 1024. While the agreement of the experimental results 
with the theory was quite good, numerical experiments testing the validity of 
the theoretical results for different distributions of the data are called for and 
are in progress. 
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